Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Journal of Central South University(Medical Sciences) ; (12): 361-367, 2021.
Article in English | WPRIM | ID: wpr-880667

ABSTRACT

OBJECTIVES@#Excessive production of AGEs in diabetic patients will affect the normal function of osteoblasts, and this process may be related to autophagy of osteoblasts. This study aims to explore the effect of advanced glycation end products (AGEs) on autophagic activity during osteogenic differentiation in rat bone marrow mesenchymal stem cells (BMSCs).@*METHODS@#BMSCs were isolated and cultured in vitro, treated with different concentrations (0, 50, 100, 200, and 400 mg/L) of AGEs for different time (3, 6, 12, 24, 48, and 72 h). The proliferation activity was detected by CCK-8 method. The mRNA and protein expression levels of Beclin1 and LC3 in cells were detected by real-time PCR and Western blotting, respectively.The autophagic vacuoles were observed under the transmission electron microscope. The cells were treated with autophagy promoter rapamycin or autophagy inhibitor 3MA. After 7 days of osteogenic induction, we performed alkaline phosphatase (ALP) staining and real-time PCR to detect the mRNA expression levels of osteogenesis-related genes.@*RESULTS@#In the low-concentration groups, the proliferation activity in BMSCs was increased (@*CONCLUSIONS@#Low concentration of AGEs can enhance the proliferative activity of BMSCs and promote osteogenic differentiation by accelerating autophagy. High concentration of AGEs can suppress the proliferation of BMSCs and inhibit osteogenic differentiation by reducing autophagy.


Subject(s)
Animals , Humans , Rats , Autophagy , Bone Marrow Cells , Cell Differentiation , Cells, Cultured , Glycation End Products, Advanced/pharmacology , Osteoblasts , Osteogenesis , Rats, Sprague-Dawley
2.
Journal of Southern Medical University ; (12): 573-579, 2020.
Article in Chinese | WPRIM | ID: wpr-828102

ABSTRACT

OBJECTIVE@#To explore the effect of advanced glycation end products (AGEs) on osteoclasts at different stages of differentiation.@*METHODS@#Raw264.7 cells cultured were induced for osteoclastogenesis using RANKL, and the stages of differentiation of the osteoclasts were determined with TRAP staining. The cells were then randomly divided into control group, early-stage AGEs intervention group and late-stage AGEs intervention group. The viability of the cells after AGEs treatment was assessed using CCK-8 method. The cells were examined after the induction for osteoclastogenesis using TRAP staining, and the expression levels of RANK, NFATC-1, TRAF-6, TRAP and CTSK mRNAs were tested with RT-PCR; the expressions of CTSK and RANK proteins were detected using Western boltting.@*RESULTS@#We defined the initial 3 days of induction as the early stage of differentiation and the time beyond 3 days as the late stage of differentiation of Raw264.7 cells. Intervention with AGEs at 100 mg/L produced no significant effects on the viability of the cells, but AGEs suppressed the cell proliferation at a concentration exceeding 100 mg/L. The number of osteolasts in the early- and late-stage intervention groups was greater than that in the control group, but the cell count differed significantly only between the early-stage intervention group and control group ( < 0.05). The gene expressions of RANK, NFATC-1, TRAF-6, TRAP and CTSK all increased after the application of AGEs in both the early and late stages of differentiation, but the changes were significant only in the early-stage intervention group ( < 0.05). The changes in CTSK and RANK protein expressions were consistent with their mRNA expressions.@*CONCLUSIONS@#AGEs can affect the differentiation of osteoclasts differently when applied at different stages, and intervention with AGEs at the early stage produces stronger effect to promote osteoclast differentiation than its application at a late stage.


Subject(s)
Animals , Mice , Bone Resorption , Cell Differentiation , Osteoclasts , RANK Ligand , Receptor Activator of Nuclear Factor-kappa B
3.
Journal of Central South University(Medical Sciences) ; (12): 678-683, 2020.
Article in English | WPRIM | ID: wpr-827368

ABSTRACT

OBJECTIVES@#To explore the difference in odontoblast differentiation capacity between stem cells from human exfoliated deciduous teeth (SHED) and dental pulp stem cells (DPSCs), and to examine the expression level of ephrinB1 in odontoblast differentiation of these stem cells.@*METHODS@#The stems cells were divided into a SHED group and a DPSCs group. After odontoblast differentiation induction, the above 2 groups were also randomly divided into a 3 d group and a 7 d group, respectively.The calcium deposition was detected by alkaline phosphatase (ALP) staining and alizarin red staining.The mRNA and protein expressions of ephrinB1, dentin matrix protein-1 (DMP-1) and dentin sialophosphoprotein (DSPP) were detected by real-time PCR and Western blotting.@*RESULTS@#ALP staining and alizarin red staining showed that there was stronger mineralization capacity in the SHED group than that in the DPSCs group. The relative mRNA and protein expressions of DMP-1, DSPP, and ephrinB1 in the SHED group were higher than those in the DPSCs group except for the protein expression of DMP-1 in the SHED 3 d group (all <0.05).@*CONCLUSIONS@#SHED has stronger odontoblast differentiation capacity than DPSCs. In addition, ephrinB1 may be involved in the processes of odontoblast differentiation in the SHED and DPSCs.


Subject(s)
Humans , Cell Differentiation , Cell Proliferation , Cells, Cultured , Dental Pulp , Odontoblasts , Osteogenesis , Stem Cells , Tooth, Deciduous
SELECTION OF CITATIONS
SEARCH DETAIL